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A B S T R A C T   

Minimizing metabolic energy expenditure (MEE) plays an important role in increasing mobility in people with 
locomotor disabilities, as movements that require high energy lead to less activity. Rehabilitation programs and 
devices use MEE to determine how effective they are, but using indirect calorimetry is limiting due to time delays 
and non-real-world conditions. Electromyography (EMG) offers insight into how muscles activate; thus, the 
purpose of this study was to develop a real-time MEE feedback system through the utilization of EMG signals. 
Participants completed five walking conditions at different stride frequencies (preferred, +/- 15%, +/- 30%), 
while breath-by-breath gas exchange, ground reaction forces and EMG signals were collected. The live EMG 
signal was numerically integrated and separated into strides, then scaled by a cost of force (COF) coefficient. MEE 
had the expected quadratic relationship seen in previous literature (R2 = 0.967), along with COF data (R2 =

0.701). The EMG method stabilized between 75.1% - 133.1%, which is not within a close range (90% - 110%) of 
MEE; thus, future studies must investigate other mathematical methods. Our results indicate a qualitative as-
sociation between MEE and EMG activity, which could be used to increase mobility and quality of life for 
populations with disability.   

1. Introduction 

Minimizing energy expenditure during locomotion plays an impor-
tant role in the animal kingdom, from small to large animals with 
differing forms of locomotion [1–3]. This principle applies to human 
movement across many walking parameters, such as stride frequency, 
step width, and gait speed to minimize energy costs [4–7]. People with 
disabilities may also minimize energy expenditure [8] but have mobility 
deficits that cause impaired locomotion, making it difficult to experi-
mentally prove this with current methods. Development of assistive 
devices and rehabilitation programs use the measurement of energy 
expenditure to make an assessment of the macroscopic effects of the 
mechanism on the body [9,10]. If real-time metabolic data could be 
obtained during locomotion, it would give insight into how specific 
parameters could be adjusted to promote increased mobility and quicker 
recovery; however, this is difficult to achieve with current methods. 

Currently, the most widely used approach to estimate metabolic 
energy expenditure (MEE) in engineering and biomechanics is indirect 

calorimetry (IC), which measures expired oxygen and carbon dioxide 
byproducts of the internal energetic demands to supply muscles and 
other organs with energy in the form of ATP. However, due to mito-
chondrial dynamics and oxygen exchanges that take place during cir-
culation from the muscles to the lungs [11] a delay exists before oxygen 
usage presents itself in the respiratory gases [12,13], making it difficult 
to estimate direct metabolic energy expenditure in real-time. This leads 
to the fundamental limitation of indirect calorimetry, being the need to 
perform tests in which steady state levels are obtained over several 
minutes at a certain parameter to ensure that oxygen is being consumed 
at a sustainable rate [14], as well as high breath-by-breath noise present 
in the measurements [13]. The implications of these limitations make 
real-world comparisons difficult, wherein only one percent of walking 
lasts the required five minutes at steady parameters due to continually 
changing terrain or task objectives [15]. Changing terrain can require 
quicker and slower steps, with quicker steps having greater MEE than 
slower steps based on the cost of force relationship [16]. More impor-
tantly, people with disabilities are often unable to perform long bouts of 
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steady state conditions due to mobility difficulties. The limitations of 
indirect calorimetry are well-acknowledged, resulting in the develop-
ment of new methods to estimate energy expenditure. 

An approach that is promising in estimating rapidly changing energy 
costs is measurement of muscle activity using electromyography (EMG), 
which records the myoelectric signals produced during muscle activa-
tion [16]. As the muscles perform a task, they are supplied with energy 
from both aerobic and anaerobic sources, implying that muscle activa-
tions correlate directly with dynamic energy expenditure [17]. EMG 
signals collecting muscle activation happening in real-time could 
significantly decrease the time delay in estimating MEE compared to IC 
(Fig. 1). Previous studies that examined EMG while walking were able to 
accurately predict metabolic energy expenditure validated side-by-side 
with indirect calorimetry, one under a specific set of ankle assisted 
walking conditions [18] and the other showing muscle activity mini-
mized while walking at a preferred stride frequency (PSF) [19]. Addi-
tionally, results from another study were able to establish a relationship 
between metabolic power and EMG signals during non-steady state 
cycling conditions [17]. These studies indicate the potential for devel-
oping a robust method of determining energy expenditure from EMG 
signals. To the authors knowledge, there has not been a study to estimate 
real-time energy expenditure compared to indirect calorimetry while 
walking using EMG. If people with disabilities had access to immediate 
metabolic cost predictions for everyday movements, it could lead to 
quicker movement self-optimization and a better quality of life [20]. 

The purpose of this study was to develop a real-time metabolic en-
ergy expenditure feedback system using EMG. We hypothesized that 
real-time EMG would have the same qualitative (i.e., pattern) relation-
ship as IC across preferred and non-preferred walking patterns. In 
addition to collecting unaltered muscle activity, we also were interested 
in incorporating scaling coefficients to investigate whether their inclu-
sion would provide a better match to IC. We incorporated a coefficient 
approximating the cost of force required by each stride, which was 

calculated by taking the reciprocal of the time of each stride [21]. This 
was chosen to drive up MEE estimations for quicker stride conditions 
and lower MEE estimations for longer stride conditions and was hy-
pothesized to provide a better match to IC. We hypothesized that the 
real-time EMG would have a different quantitative relationship to IC. We 
wanted insight into how quickly EMG could predict sudden changes in 
MEE, hoping the time delay that exists with indirect calorimetry can be 
decreased. Additionally, we wanted to know which muscle sets are the 
best predictors of MEE and hypothesized that larger muscles will have a 
greater contribution to energy expenditure and would be the best in-
dicators of total energy costs. 

2. Methods 

Five healthy participants (age = 22.1 ± 1.1 yr., height = 1.7 ± 0.1 m, 
mass = 69.6 ± 14.3 kg, females = 3) took part in this study after giving 
informed written consent to protocols approved by East Carolina Uni-
versity’s Institutional Review Board. The participants completed five 
different walking conditions at 1.3 m⋅s− 1 on an instrumented treadmill 
(Bertec, Columbus, OH) at five-minute intervals after an initial five- 
minute static collection. The first condition was at the participant’s 
PSF, and the remaining four were +/- 15% and 30% of the PSF in a 
random order. Each individual’s PSF was recorded by making note of 
how many steps they took in one minute while walking during the first 
condition [22]. An audio metronome was used to indicate the desired 
frequency and the participant was directed to time each step to the beat. 
The participants walked continuously for the first three conditions, 
underwent a 60 second rest to prevent lagging in the program due to the 
amount of data, and then walked continuously for the final two 
conditions. 

Breath-by-breath oxygen and carbon dioxide gas exchange were 
recorded (ParvoMedics TrueOne 2400, Sandy, UT) during the static and 
walking periods continuously. Additionally, ground reaction forces and 

Fig. 1. Theoretical Framework Comparing Energy Expenditure Processes. EMG may significantly decrease time delay seen in IC giving reliable MEE estimates.  
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surface EMG (Motion Lab Systems, Baton Rouge, LA) signals were 
recorded throughout the trials. EMG sensors were placed on five muscles 
(biceps femoris (BF), rectus femoris (RF), vastus lateralis (VL), medial 
gastrocnemius (MG), soleus (Sol)) on each leg for all participants. These 
muscles were chosen due to their superficial nature and easy access 
which allowed data to be clean and reliable. Participant’s skin was 
prepared and sensors were placed according to accepted standards and 
guidelines [16]. The signals from the force treadmill and EMG were 
acquired using a DAQ Board (Measurement Computing Corporation, 
Norton, MA) which fed the live voltage signal into LabVIEW (National 
Instruments, Austin, TX). 

In LabVIEW, the live voltage signals from the DAQ Board were 
filtered through a 4th order bandpass and lowpass filter and then recti-
fied [16]. Each individual muscle signal was multiplied by the fraction 
of muscle volume within a lower extremity from a previous imaging 
study [23]. The program used the ground reaction forces to signal heel 
strike and toe-off while numerically integrating the EMG signal [24]. 
This resulted in the quantity referred to as RAW, which is the unaltered 
summed muscle activity for each stride. After a pilot trial, it was 
observed that the negative stride conditions (-30%, -15%) were over-
estimated while the positive stride conditions (15%, 30%) were under-
estimated significantly compared to IC in the RAW data. A scaling 
coefficient calculation to approximate the cost-of-force (COF) was added 
to observe if its inclusion would provide a closer match to IC. This was 
obtained by taking the reciprocal of stride time from a three-stride 
moving average, which would decrease the muscle output estimation 
for the slower conditions with a longer stride time (-30%, -15%) and 
increase them for the faster ones with a quicker stride time (15%, 30%). 
The unaltered summed muscle activity, RAW, was multiplied by the COF 
coefficient separately to determine how they compared to each other in 
approximating MEE. This resulted in two quantities that were analyzed, 
the first being the unaltered summed muscle activity, RAW, and the 
second being RAW multiplied by the cost-of-force coefficient, referred to 
as COF. Throughout the data collection, a bar graph displayed the COF 
summed muscle activity per stride and the percentages of the individual 
muscle contributions for the previous three strides in real-time. The 
participants were told not to alter their walking based on the real-time 
display but match the audible metronome. 

Following the data collection, metabolic energy expenditure was 
calculated from averaged gas exchange data over the last two minutes of 
each condition [25]. The average stride-by-stride muscle activity 
exported from LabVIEW was sorted by condition. The last 189 strides for 
each condition were used for data analysis. 

To examine the qualitative relationship between MEE and EMG per 
stride, each subject’s average ground truth MEE and summed total 
muscle activity per stride for each condition (-30%, -15%, PSF, +15%, 
+30%) were packaged together as the RAW unaltered totals and the COF 
product. Statistical analyses were performed in MATLAB (2021b, 
MathWorks, Natick, MA), R (R Core Team, 2017) and Excel®. To 
examine the qualitative relationships between datasets, orthogonal 
polynomial contrast analysis with ANOVA methods were utilized to 
examine which polynomial equation best represented the relationship of 
the summed total muscle activity and ground truth energy expenditure. 
As a surrogate measure we expect values for EMG obtained from an 
individual participant, or a function of these values, to be close to that 
individual’s MEE value. What is considered a suitable tolerance between 
MEE and the surrogate measure will depend on the application. For this 
study, surrogate values needed to be within 10% of the MEE value. 
Another property of a surrogate measure is that it is close to the target 
value with high probability.  With only five individuals this aspect could 
not be addressed. We began with the simplest surrogate, that of using 
EMG values. EMG values may stabilize earlier than MEE, but the 
required number of strides for this stabilization is unknown and can 
depend on experimental condition and the individual. The relationship 
between number of strides and the potential of EMG values to be used as 
surrogates was explored by making scatter plots with the difference 

between log EMG and log MEE values on the y-axis and number of 
strides on the x-axis.  Plotting symbols of different colors were used to 
distinguish the individuals. 

3. Results 

All analyses were computed using the data from the ground truth 
energy expenditure calculated from IC and the EMG muscle activity per 
stride (Table 1). MEE had a U-shaped relationship, with the least amount 
of MEE at the PSF and increasing exponentially the further away the 
participant deviated from the PSF (p = 0.015, R2 = 0.090 [linear]; p <
0.001, R2 = 0.966 [quadratic]; p = 0.676, R2 = 0.984 [cubic]) (Fig. 2). 
The average muscle activity per stride with the implemented COF co-
efficient had a similar U-shaped relationship (p = 0.023, R2 = 0.211 
[linear]; p = 0.004, R2 = 0.701 [quadratic]; p = 0.449, R2 = 0.963 
[cubic]) (Fig. 2). MEE and COF was represented best by a quadratic 
equation, while the RAW unaltered totals (p < 0.001, R2 = 0.534 
[linear]; p = 0.051, R2 = 0.874 [quadratic]; p < 0.001, R2 = 0.993 
[cubic]) was best represented by a cubic equation (Fig. S1). 

The plots showed that for most conditions the EMG values stabilized 
after 100 strides, meaning there were ~89 strides left within the con-
dition, and therefore not stabilizing faster than MEE (Figs. 3-4).  These 
plots also showed considerable variability across the five individuals 
(Figs. 3-4). The EMG values did not stabilize in the range from -.10 to .10 
for any conditions (Fig. 4), therefore absolute differences on the log 
scale, which correspond to the log of relative differences on the original 
scale, did not stabilize between 90.5% (= exp(-.10)*100%) and 110.5% 
(= exp(.10)*100%) of the MEE value. 

These plots also showed that stabilized values for the five individuals 
were not centered at zero (Figs. 3-4). For many of the conditions, the 
EMG values were below their corresponding MEE values. If the stabi-
lized values for all five individuals fell within a range of 0.2 (not 
necessarily centered at zero, i.e., -.10 to .10) then there is the possibility 
that an offset could be used to make these values into suitable surro-
gates. Ideally, the range would be less than 0.2 since the offset would be 
based on the data and so introduce additional variability. None of the 
plots had a range of stabilized values that was less than 0.57 (Table 2). 
The muscle groupings that stabilized in a range of 0.57 were MG-SOL, 
BF-SOL, BF-MG, and BF-VL-MG, only when multiplied by the COF co-
efficient (Fig. 4, Table 2). 

4. Discussion 

The purpose of this project was to determine feasibility of a method 
that estimates real-time energy expenditure with EMG signals by 
comparing it to IC. When looking at mean muscle activity per stride over 
individuals, our results indicate a promising relationship with MEE 
measured with IC, especially for summed muscle activity scaled by the 
inverse of stride time (i.e., COF). The COF (R2 = 0.701) summed muscle 
activity had a U-shaped relationship across conditions, similar to MEE 
(R2 = 0.967), which was expected (Fig. 2) [6]. The estimated changes in 
MEE from summed muscle activity with our data are similar to a 
different study which determined that breath-by-breath EMG intensity 
gives a reliable assessment of changes in metabolic power [17]. The 
RAW unaltered totals did not reflect the U-shaped curve, as they tended 

Table 1 
Average and standard deviation of breath-by-breath MEE and EMG muscle 
activation (cost of force = COF, unscaled = RAW) per stride.  

Stride Frequency Condition MEE (J/kg/m Net) COF (V/s) RAW (V/s) 

-30% 3.43 ± 0.66 3.59 ± 0.61 4.94 ± 0.80 
-15% 2.54 ± 0.48 2.71 ± 0.247 3.27 ± 0.31 
PSF 2.08 ± 0.22 2.73 ± 0.21 2.97 ± 0.29 
+15% 2.46 ± 0.12 3.14 ± 0.37 3.03 ± 0.57 
+30% 3.32 ± 0.31 3.29 ± 0.40 2.97 ± 0.31  
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to overestimate the negative conditions (i.e., longer strides) and un-
derestimate the positive conditions (i.e., shorter strides) (Fig. S1-2). The 
COF coefficient considered the amount of force needed to execute 
quicker movements and increased the values seen in the positive con-
ditions, and decreased the values seen in the negative conditions. 

While muscle activity per stride increases and decreases along with 

MEE, our results showed the variability in the relationship across in-
dividuals indicates that additional information is required to obtain a 
suitable approximation to the MEE value for an individual. We tried to 
account for the different energetic demands of each muscle by scaling 
muscles to relative volume within each leg. There may be other scaling 
factors, statistical methods such as multiple linear regression in real- 

Fig. 2. Muscle Contribution to COF Average Summed Muscle Activity: Mean MEE and muscle activity at different stride frequencies. Shaded blue and error bars are 
± 1 SD. COF summed muscle activity reflects U-shaped curve seen of MEE from IC, indicating a potential qualitative relationship. 

Fig. 3. Steady state MEE (solid line) and COF EMG by stride (dots) for four muscle combinations for individual participants (colors) and means (black). Each dot 
represents an individual stride. The EMG COF values underestimate the steady state MEE in most conditions and muscle combinations. 
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time, or other forms of machine learning that this study did not consider 
to establish significantly similar quantitative values. The analysis shows 
that for many conditions, the EMG values stabilized for each of the in-
dividuals after a reasonable number of strides (~100). We also found 
that the variability among individuals was so great that the stabilized 
values cannot be used as surrogate measure which indicates surrogate 
values will need to include participant characteristics (such as sex) and/ 
or that the experimental conditions (e.g., velocity) need to be adjusted to 
address differences among participants (such as height). Establishing a 
quantitative relationship could lead to better predictions of MEE in the 
real-world and avoid the limitations of IC in the laboratory, assuming 
that measuring muscle activity would result in a smaller time delay to 
attain steady state to quantify the MEE for a new walking task. However, 
it is possible that it would take longer than hoped, this is yet to be 
determined and leads to a future research goal. 

After analyzing different combinations of muscle groups, we cannot 
confirm that larger sets of muscles would be better predictors of energy 
expenditure. However, this could mean that the muscles used in this 
project each contain valuable information about real-time energy 
expenditure, potentially implying that a small number of sensors would 
be needed to get a reliable qualitative relationship. The four muscle 
combinations with a spread of 0.57 (Fig. 4) all had at least one triceps 
surae muscle, and three of the four had only two muscles. The triceps 
surae is an important set of locomotor muscles [26] and having only two 
muscles with the best quantitative results indicate potential for less 
sensors being needed. A study that examined muscle activity tuning to 
different stride frequencies showed that peak EMG values from eight 
different muscles, including the five muscles used in this study, all 
demonstrated the U-shaped quadratic relationship across varying stride 
frequencies [27]. 

There were many limitations with this initial study, as this research 

served as a pilot study and provided the technical means to continue to 
research a relationship between MEE and EMG. Due to the nature of the 
study, researchers were provided with a small window of time to access 
the equipment needed to both develop the real-time program and collect 
participant data, and were not given any additional opportunities to 
collect data for more subjects. The sample size was smaller than needed 
to show validation of a reliable pattern of MEE across subjects and a 
larger scale study with more participants and other numerical consid-
erations will need to be conducted to make any conclusive statements 
about the feasibility of developing a real-time EMG surrogate for MEE. 
We believe the findings are another step in trying to find real-time MEE 
surrogates and will be useful in designing a larger study. We did not 
account for the force-length and force-velocity properties of muscles and 
how elastic energy could be playing a role with different conditions. 
Walking at different stride frequencies at only one constant velocity was 
observed. Other factors, such as changing velocities, terrain, and 
movements were not represented in this study, which would be a more 
robust examination into the relationship between MEE and EMG. 
Additionally, all the participants were young and able-bodied, therefore 
not representative of populations with disabilities, which this research 
aims to benefit. Lastly, EMG is an inherently noisy signal that can be 
distorted by sensor sliding and electrical noise due to sweat and excess 
body tissue. 

Future studies will have more participants with additional proced-
ures included to capture rapidly changing stride frequency conditions. 
We will also use other statistical and mathematical methods, such as 
multiple linear regression or extraction of different EMG features to 
estimate MEE more accurately. An increased number of participants and 
different mathematical methods may answer remaining questions 
regarding the quantitative relationship between MEE and EMG muscle 
activity per stride, while also improving quantitative predictions. Once 

Fig. 4. Log differences of EMG and MEE for muscle combinations that had the lowest spread between individual participant data (0.57) and represent the closest 
quantitative relationship between EMG and MEE. Each dot is an individual stride, with inidividual participants (colored) and means (black). Each muscle combi-
nations with the smallest range had at least one triceps surae muscle and three of the four were only two muscles. 
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Table 2 
Spread of individual data showing the offset between max and min EMG and metabolic energy expenditure log differences after the 100th stride in column one of each condition, and the minimum (column two of each 
condition) and maximum (column three of each condition) percentage of EMG stabilization relative to metabolic energy expenditure for 30 muscle combinations with RAW and COF values. 12 combinations are bolded 
because they are the smallest spreads of individual data (0.57 and 0.58).  

Muscle Combinations Negative 30% Negative 15% Preferred Positive 15% Positive 30% Means 

SOL COF 0.60 74.1 135.0 0.55 76.0 131.7 0.56 75.6 132.3 0.55 76.0 131.7 0.68 71.2 140.5 0.59 74.6 134.2 
SOL 0.70 70.5 141.9 0.80 67.0 149.2 0.63 73.0 137.0 1.05 59.2 169.0 1.25 53.5 186.8 0.89 64.6 156.8 
MG COF 0.60 74.1 135.0 0.58 74.8 133.6 0.55 76.0 131.7 0.50 77.9 128.4 0.65 72.3 138.4 0.58 75.0 133.4 
MG 0.70 70.5 141.9 0.78 67.7 147.7 0.60 74.1 135.0 1.05 59.2 169.0 1.20 54.9 182.2 0.87 65.3 155.2 
VL COF 0.60 74.1 135.0 0.52 77.1 129.7 0.55 76.0 131.7 0.54 76.3 131.0 0.70 70.5 141.9 0.58 74.8 133.8 
VL 0.70 70.5 141.9 0.75 68.7 145.5 0.60 74.1 135.0 1.05 59.2 169.0 1.25 53.5 186.8 0.87 65.2 155.7 
RF COF 0.60 74.1 135.0 0.57 75.2 133.0 0.57 75.2 133.0 0.52 77.1 129.7 0.70 70.5 141.9 0.59 74.4 134.5 
RF 0.67 71.5 139.8 0.87 64.7 154.5 0.60 74.1 135.0 1.02 60.0 166.5 1.15 56.3 177.7 0.86 65.3 154.7 
BF COF 0.60 74.1 135.0 0.56 75.6 132.3 0.55 76.0 131.7 0.55 76.0 131.7 0.75 68.7 145.5 0.60 74.1 135.2 
BF 0.70 70.5 141.9 0.75 68.7 145.5 0.60 74.1 135.0 3.15 20.7 483.1 1.25 53.5 186.8 1.29 57.5 218.5 
MG-SOL COF 0.60 74.1 135.0 0.55 76.0 131.7 0.53 76.7 130.3 0.53 76.7 130.3 0.65 72.3 138.4 0.57 75.1 133.1 
MG-SOL 0.70 70.5 141.9 0.78 67.7 147.7 0.60 74.1 135.0 1.00 60.7 164.9 1.20 54.9 182.2 0.86 65.6 154.3 
VL-SOL COF 0.60 74.1 135.0 0.55 76.0 131.7 0.55 76.0 131.7 0.55 76.0 131.7 0.65 72.3 138.4 0.58 74.8 133.7 
VL-SOL 0.70 70.5 141.9 0.40 81.9 122.1 0.60 74.1 135.0 1.05 59.2 169.0 1.28 52.7 189.6 0.81 67.7 151.5 
VL-MG COF 0.60 74.1 135.0 0.55 76.0 131.7 0.57 75.2 133.0 0.55 76.0 131.7 0.68 71.2 140.5 0.59 74.5 134.4 
VL-MG 0.67 71.5 139.8 0.79 67.4 148.4 0.63 73.0 137.0 1.00 60.7 164.9 1.20 54.9 182.2 0.86 65.5 154.5 
RF-SOL COF 0.70 70.5 141.9 0.56 75.6 132.3 0.55 76.0 131.7 0.50 77.9 128.4 0.70 70.5 141.9 0.60 74.1 135.2 
RF-SOL 0.65 72.3 138.4 0.78 67.7 147.7 0.60 74.1 135.0 1.03 59.8 167.4 1.20 54.9 182.2 0.85 65.7 154.1 
RF-MG COF 0.58 74.8 133.6 0.58 74.8 133.6 0.55 76.0 131.7 0.55 76.0 131.7 0.70 70.5 141.9 0.59 74.4 134.5 
RF-MG 0.68 71.2 140.5 0.75 68.7 145.5 0.60 74.1 135.0 1.05 59.2 169.0 1.25 53.5 186.8 0.87 65.3 155.4 
RF-VL COF 0.60 74.1 135.0 0.55 76.0 131.7 0.55 76.0 131.7 0.57 75.2 133.0 0.65 72.3 138.4 0.58 74.7 133.9 
RF-VL 0.69 70.8 141.2 0.55 76.0 131.7 0.60 74.1 135.0 1.00 60.7 164.9 1.20 54.9 182.2 0.81 67.3 151.0 
BF-SOL COF 0.58 74.8 133.6 0.53 76.7 130.3 0.55 76.0 131.7 0.54 76.3 131.0 0.65 72.3 138.4 0.57 75.2 133.0 
BF-SOL 0.70 70.5 141.9 0.75 68.7 145.5 0.60 74.1 135.0 1.00 60.7 164.9 1.15 56.3 177.7 0.84 66.0 153.0 
BF-MG COF 0.60 74.1 135.0 0.55 76.0 131.7 0.50 77.9 128.4 0.55 76.0 131.7 0.65 72.3 138.4 0.57 75.2 133.0 
BF-MG 0.70 70.5 141.9 0.78 67.7 147.7 0.63 73.0 137.0 1.05 59.2 169.0 1.20 54.9 182.2 0.87 65.0 155.6 
BF-VL COF 0.58 74.8 133.6 0.55 76.0 131.7 0.55 76.0 131.7 0.55 76.0 131.7 0.70 70.5 141.9 0.59 74.6 134.1 
BF-VL 0.70 70.5 141.9 0.75 68.7 145.5 0.60 74.1 135.0 1.05 59.2 169.0 1.30 52.5 191.6 0.88 64.9 156.6 
BF-RF COF 0.60 74.1 135.0 0.53 76.7 130.3 0.55 76.0 131.7 0.56 75.6 132.3 0.65 72.3 138.4 0.58 74.9 133.5 
BF-RF 0.70 70.5 141.9 0.75 68.7 145.5 0.60 74.1 135.0 1.03 59.8 167.4 1.25 53.5 186.8 0.87 65.3 155.3 
VL-MG-SOL COF 0.58 74.8 133.6 0.55 76.0 131.7 0.55 76.0 131.7 0.55 76.0 131.7 0.70 70.5 141.9 0.59 74.6 134.1 
VL-MG-SOL 0.70 70.5 141.9 0.75 68.7 145.5 0.65 72.3 138.4 1.05 59.2 169.0 1.25 53.5 186.8 0.88 64.8 156.3 
RF-MG-SOL COF 0.60 74.1 135.0 0.53 76.7 130.3 0.57 75.2 133.0 0.55 76.0 131.7 0.70 70.5 141.9 0.59 74.5 134.4 
RF-MG-SOL 0.70 70.5 141.9 0.75 68.7 145.5 0.60 74.1 135.0 1.05 59.2 169.0 1.30 52.2 191.6 0.88 64.9 156.6 
RF-VL-SOL COF 0.58 74.8 133.6 0.55 76.0 131.7 0.53 76.7 130.3 0.55 76.0 131.7 0.70 70.5 141.9 0.58 74.8 133.8 
RF-VL-SOL 0.70 70.5 141.9 0.78 67.7 147.7 0.63 73.0 137.0 1.05 59.2 169.0 1.25 53.5 186.8 0.88 64.8 156.5 
RF-VL-MG COF 0.58 74.8 133.6 0.57 75.2 133.0 0.55 76.0 131.7 0.57 75.2 133.0 0.70 70.5 141.9 0.59 74.3 134.6 
RF-VL-MG 0.73 69.4 144.1 0.75 68.7 145.5 0.60 74.1 135.0 1.02 60.0 166.5 1.35 50.9 196.4 0.89 64.6 157.5 
BF-MG-SOL COF 0.58 74.8 133.6 0.57 75.2 133.0 0.55 76.0 131.7 1.10 57.7 173.3 0.70 70.5 141.9 0.70 70.8 142.7 
BF-MG-SOL 0.70 70.5 141.9 0.75 68.7 145.5 0.60 74.1 135.0 1.00 60.7 164.9 1.25 53.5 186.8 0.86 65.5 154.8 
BF-VL-SOL COF 0.60 74.1 135.0 0.53 76.7 130.3 0.55 76.0 131.7 0.55 76.0 131.7 0.70 70.5 141.9 0.59 74.6 134.1 
BF-VL-SOL 0.68 71.2 140.5 0.75 68.7 145.5 0.60 74.1 135.0 1.03 59.8 167.4 1.20 54.9 182.2 0.85 65.7 154.1 

(continued on next page) 
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validation of the method is reached with able-bodied participants, we 
hope to use this method with people who have disabilities, to examine 
MEE with rapidly changing gait strategies. Trying different gait strate-
gies in a short period of time may lead to finding the best gait pattern 
more efficiently. Extending this research to movements such as running, 
lifting, jumping, and other everyday occurrences would be beneficial 
and make this method more generalizable to the real-world. 

Implications of a real-time energy expenditure feedback system are 
extensive for people with disabilities. This technology could be inte-
grated into a wearable sensor taken outside a lab setting, collecting 
energy cost information about everyday movements. Clinicians could 
have access to this data and make recommendations that would lessen 
metabolic energy costs. It may aide in the development of exoskeletons 
or powered protheses by showing the macroscopic effects of the device 
on the body. By making movements more economical, people will 
hopefully move more. Increased physical activity lowers the risk for 
conditions such as cardiovascular disease, joint degradation, diabetes, 
and depression, among many others [28–30]. This proof-of-concept 
study established a method with reasonable preliminary results for a 
real-time energy expenditure feedback system that could be used to 
significantly improve the health and quality of life for people with 
disabilities. 
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