Short communication

Are lower back demands reduced by improving gait symmetry in unilateral transtibial amputees?

Jacob J. Banksa,b, Ryan D. Wedgea,c,*, Graham E. Caldwella, Brian R. Umbergerd,a

a Department of Kinesiology, University of Massachusetts Amherst, Tooman Building 30 Eastman Lane, Amherst, MA 01003, United States
b Department of Orthopedic Surgery, Center for Advanced Orthopaedic Studies, Beth Israel Deaconess Medical Center and Harvard Medical School, 330 Brookline Avenue Boston, MA 02215, United States
c Department of Physical Therapy, East Carolina University, Health Sciences Building 600 Moye Blvd, Greenville, NC 27834, United States
d School of Kinesiology, University of Michigan, 800 North University, Ann Arbor, MI 48109, United States

\textbf{A R T I C L E I N F O}

\begin{itemize}
 \item Keywords: Gait asymmetry
 \item Amputee
 \item Lower back pain
 \item Musculoskeletal model
 \item Transtibial
\end{itemize}

\textbf{A B S T R A C T}

\textbf{Background:} Gait asymmetry and a high incidence of lower back pain are typical for people with unilateral lower limb amputation. A common therapeutic objective is to improve gait symmetry; however, it is unknown whether better gait symmetry reduces lower back pain risk. To begin investigating this important clinical question, we examined a preexisting dataset to explore whether L5/S1 vertebral joint forces in people with unilateral lower limb amputation can be improved with better symmetry.

\textbf{Methods:} L5/S1 compression and resultant shear forces were estimated in each participant with unilateral lower limb amputation ($n = 5$) with an OpenSim musculoskeletal model during different levels of guided gait asymmetry. The amount of gait asymmetry was defined by bilateral stance times and guided via real-time feedback. A theoretical lowest L5/S1 force was determined from the minimum of a best-fit quadratic curves of L5/S1 forces at levels of guided asymmetry ranging from -10 to $+15\%$. The forces found at the theoretical lowest force and during the 0\% asymmetry level were compared to forces at preferred levels of asymmetry and to those from an able-bodied group ($n = 5$).

\textbf{Findings:} Results indicated that the forces for the people with unilateral lower limb amputation group at the preferred level of asymmetry were not different than at their 0\% asymmetry condition, theoretical lowest L5/S1 forces, or the able-bodied group (all p-values $.23$).

\textbf{Interpretation:} These preliminary results challenge the premise that restoring symmetric gait in people with unilateral lower limb amputation will reduce risk of lower back pain.

1. Introduction

People with unilateral lower limb amputation (PULLA) often walk asymetrically (Sagawa et al., 2011; Wedge et al., 2022). Unfortunately, gait asymmetry results in higher metabolic cost of transport (Ellis et al., 2013) and is potentially responsible for secondary disorders that impact quality of life (Sagawa et al., 2011). Lower back pain (LBP) is another frequently cited complication for PULLA, with approximately twice the reported prevalence as the able-bodied population (Hammarlund et al., 2011). Greater LBP prevalence coupled with an increasing number of amputations (Ziegler-Graham et al., 2008) has prompted several biomechanical investigations into the estimated internal demands placed on the lower back during gait in PULLA (Devan et al., 2014).

Lower back vertebral joint forces estimated from musculoskeletal computer models are generally greater in PULLA gait than in able-bodied controls (Shojaei et al., 2016). These increased spinal demands have been attributed to proesthetic limitations that during gait can lead to reduced stance time, greater lateral trunk flexion during prosthetic limb stance, greater forward trunk lean, and more sustained erector spinea activity than in able-bodied gait (Devan et al., 2014; Sagawa et al., 2011). Despite these reported differences and symmetry being a target of therapy, it is still unclear how PULLA’s preferred asymmetric gait mechanisms relate to lower back demands and ultimately LBP.
Therefore, it is of clinical importance as to whether lower back demands could be reduced by adjusting the degree of gait asymmetry. To begin addressing this novel question, we used data from a complimentary study (Wedge et al., 2022) to compare lower back L5/S1 vertebral joint forces estimated from a musculoskeletal computer model in PULLA, for both their preferred level of asymmetry and for different levels of gait asymmetry. We hypothesize that the L5/S1 joint forces during the preferred level of asymmetry cannot be significantly lowered by enforcing gait symmetry nor will it be lower at a theoretically lowest force amount, as interpolated from multiple asymmetric gait conditions. We further hypothesize that PULLA will have greater L5/S1 joint forces than an able-bodied comparison group.

2. Methods

Five PULLA and five able-bodied participants (Table 1) took part in this study which was approved by an Institutional Review Board. All participants were healthy adults and provided informed written consent. PULLA participants were limited to people with a transtibial amputation from non-vascular causes at least 1-year post amputation and capable of walking with variable cadences (i.e., >K3 (Gailey et al., 2002)).

Participants attended two laboratory sessions. The first was required to identify preferred walking speed (PWS) (Johnson et al., 2020) and preferred level of asymmetry for each participant, and to acclimate to walking on a treadmill (Treadmex, USA) at guided levels of asymmetry. During the second session, whole-body kinematic data (Qualisys AB, Sweden) were collected at 240 Hz. In both sessions, participants first walked on a motorized treadmill with their preferred gait mechanics (i.e., PWS and preferred level of asymmetry) and then performed up to six different randomly presented conditions of gait asymmetry (–10% to 15% in 5% increments [0% = symmetrical]). Preliminary tests revealed the –15% asymmetry condition was potentially unsafe for PULLA, so they were not presented with this condition. All conditions lasted for five minutes and were performed at their PWS. Gait asymmetry levels were defined as the difference between intact (dominant) and prosthetic (non-dominant) leg stance times relative to the combined stance time (Dingwell et al., 1996). Participants were provided a visual line as a target level of asymmetry and their real-time two-stride moving average of asymmetry based on insole foot switches (B&L Engineering Inc., USA) (Wedge et al., 2022).

L5/S1 vertebral joint forces were calculated for each asymmetry level using a full-body OpenSim model evaluated for gait (Banks et al., 2022; Delp et al., 2007). Participant-specific models were all scaled according to marker placement (Wedge, 2019) and body mass and did not consider the prosthetic properties for PULLA. Static optimization (Crownshield and Brand, 1981) was used to balance the kinetic demands across six lower back joints (i.e., L5/S1 thru T12/L1) with 238 individual musculotendon actuators. L5/S1 vertebral joint forces were expressed relative to the local coordinates of the S1 vertebrae. Participant average and peak L5/S1 vertebral joint compression and resultant shear forces were estimated from the ensemble average of three consecutive strides taken from the end of each five-minute trial.

One-sample t-tests were applied to compare level of preferred asymmetry of each group relative to zero (α < .10 for all analyses) (Curran-Everett and Benos, 2004). For each participant, theoretical lowest L5/S1 vertebral joint forces were calculated as the minimum point of a best-fit quadratic curve across all measured levels of asymmetry (Fig. 1) (Keppel, 1991). L5/S1 forces at the preferred level of asymmetry were then compared separately to both the calculated theoretical minimum and forces during the 0% asymmetry condition within the PULLA group using paired t-tests. Pooled t-tests compared the between-group anthropometric, gait characteristics, and L5/S1 forces at their preferred asymmetric gait. All applicable experimental effects were further quantified with corresponding Cohen’s d tests to accommodate our sample size (Cohen, 1988).

3. Results

The L5/S1 joint forces at the PULLA groups preferred gait were not significantly different than in symmetrical gait (i.e., 0% asymmetry) for any of the four metrics (Table 2). Similarly, there were no significant differences in any of the force metrics at preferred relative to the PULLA groups theoretical lowest values. All corresponding effect sizes for both of the aforementioned comparisons were small to medium.

PULLA and able-bodied group average and peak L5/S1 compression and resultant shear forces at their preferred gait asymmetry level were not significantly different and had corresponding small to medium effect sizes. Groups were not significantly different in mass and height, but able-bodied participants tended to be younger and preferred to walk faster and with less asymmetry (Table 1). Preferred levels of asymmetry were different from symmetric gait (i.e., 0%) in the PULLA group (p-value < .01), but not the able-bodied group (p = .65; Table 1). Most participants successfully completed all gait conditions (see Supplementary data for performance metrics), however one PULLA could not complete the –10% and another the +15% asymmetry conditions.

4. Discussion

The L5/S1 vertebral joint forces in PULLA during preferred level of asymmetry were not significantly different than with symmetrical gait.

Table 1

<table>
<thead>
<tr>
<th></th>
<th>Male: Female (n)</th>
<th>Mass (kg)</th>
<th>Height (cm)</th>
<th>Age (years)</th>
<th>Preferred Walking Speed (m/s)</th>
<th>Level of Asymmetry (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>PULLA</td>
<td>4:1</td>
<td>84.8 ± 22.0</td>
<td>178.6 ± 10.0</td>
<td>39 ± 12</td>
<td>1.1 ± 0.3</td>
<td>4.1 ± 0.9*</td>
</tr>
<tr>
<td>Able-Bodied</td>
<td>3:2</td>
<td>74.1 ± 13.4</td>
<td>177.2 ± 8.3</td>
<td>30 ± 6</td>
<td>1.4 ± 0.1</td>
<td>0.7 ± 3.2</td>
</tr>
<tr>
<td>p-value</td>
<td>.36</td>
<td>.81</td>
<td>.17</td>
<td>.02</td>
<td>.05</td>
<td></td>
</tr>
<tr>
<td>Cohen’s d</td>
<td>0.58</td>
<td>0.15</td>
<td>0.96</td>
<td>1.83</td>
<td>1.45</td>
<td></td>
</tr>
</tbody>
</table>

Significant (p < .10) between group differences are bolded. Asterisk (*) denotes level of asymmetry significantly different from zero.
and at a theoretical lowest joint force, as hypothesized. This lack of a significant effect potentially demonstrates that lower back demands are already reduced during preferred gait mechanics. The PULLA group joint forces at preferred level of asymmetry were not different from the able-bodied group, which differed from our initial hypothesis.

Asymmetric walking patterns are common, even in those with lower levels of amputation (i.e., transtibial) and who are relatively young and fit, and can result from several factors. Gait asymmetry in PULLA may be attributed to prostheses with passive components unable to produce power and provide stability as well as a biological lower limb (Hafner et al., 2002; Hak et al., 2014). Further, the residual limb / prosthesis interface is challenging, sometimes uncomfortable, and a source of power loss (LaPrè et al., 2018). To reduce cost of transport and discomfort, PULLA tend to spend more time on the intact limb and decrease gait speed (Sagawa et al., 2011). Similarly, able-bodied walkers minimize cost of transport at preferred stride frequencies, gait speeds, and step widths (Donelan et al., 2001; Ralston, 1958; Umbberger and Martin, 2007). Our results may suggest that we are unable to improve upon gait lower back demands due to various biological and prosthetic constraints (Sparrow and Newell, 1998).

The L5/S1 vertebral joint force relationships for PULLA and able-bodied groups in this study are in line with some previous reports (Yoder et al., 2015). However, others have reported that PULLA at the transtibial level tend to have larger lower back demands as able-bodied when gait speed is considered (Hendershot et al., 2018). Worth noting, when we normalize to body mass and gait speed, our between group differences at their preferred level of asymmetry were mostly significant when we normalize to body mass and gait speed, our between group differences are in line with some previous reports (Sparrow and Newell, 1998).

The current data are intended to begin assessing the lower back demand ramifications of a common clinical aim to “correct” the preferred level of asymmetry in PULLA by restoring gait symmetry (Darter et al., 2013). Our results suggest that training PULLA to walk more symmetrically may not reduce lower back demands, as they already tend to locomote at a preferred level of asymmetry that seemingly minimizes L5/S1 joint forces. Preferred level of asymmetry may be detrimental and warrant alteration for other reasons, such as gait stability and improving spine kinematics, but that has yet to be established. Therefore, without any recognized advantages, the motivation for PULLA to alter their preferred gait mechanics merits review.

Declaration of Competing Interest

None.

Acknowledgements

This work was funded in part by a dissertation research grant (Wedge, 2019) from the University of Massachusetts Amherst Graduate School.

Appendix A. Supplementary data

Supplementary data to this article can be found online at https://doi.org/10.1016/j.clinbiomech.2022.105657.

Table 2

PULLA L5/S1 vertebral joint force (N) metric averages (±SD) at their preferred level of asymmetry, 0% asymmetry, and theoretical lowest. Columns of p-values and Cohen’s d effect size values reflect within group comparisons made between the corresponding (column to the left) condition and the preferred level. p-values and Cohen’s d effect size values below able-bodied averages reflect between group comparisons at the preferred level of asymmetry.

<table>
<thead>
<tr>
<th>Group</th>
<th>Preferred Level of Asymmetry</th>
<th>0% Asymmetry</th>
<th>p</th>
<th>d</th>
<th>Theoretical Lowest</th>
<th>p</th>
<th>d</th>
</tr>
</thead>
<tbody>
<tr>
<td>Average Compression</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PULLA</td>
<td>895.7 ± 205.9</td>
<td>935.4 ± 272.0</td>
<td>.36</td>
<td>0.46</td>
<td>911.1 ± 227.3</td>
<td>.23</td>
<td>0.64</td>
</tr>
<tr>
<td>Able-Bodied</td>
<td>900.8 ± 164.5</td>
<td>p = 0.97; d = 0.03</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Peak Compression</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PULLA</td>
<td>1299.7 ± 467.0</td>
<td>1391.3 ± 665.5</td>
<td>.48</td>
<td>0.35</td>
<td>1313.8 ± 552.9</td>
<td>.79</td>
<td>0.13</td>
</tr>
<tr>
<td>Able-Bodied</td>
<td>1288.3 ± 314.4</td>
<td>p = 0.97; d = 0.03</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Average Resultant Shear</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PULLA</td>
<td>209.6 ± 58.5</td>
<td>222.1 ± 74.9</td>
<td>.25</td>
<td>0.60</td>
<td>210.3 ± 62.7</td>
<td>.86</td>
<td>0.08</td>
</tr>
<tr>
<td>Able-Bodied</td>
<td>191.1 ± 34.4</td>
<td>p = 0.56; d = 0.39</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Peak Resultant Shear</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PULLA</td>
<td>324.1 ± 133.4</td>
<td>344.2 ± 177.3</td>
<td>.51</td>
<td>0.32</td>
<td>318.5 ± 140.9</td>
<td>.52</td>
<td>0.32</td>
</tr>
<tr>
<td>Able-Bodied</td>
<td>278.7 ± 80.4</td>
<td>p = 0.53; d = 0.41</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

For more information, please refer to the original article.
References

