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Purpose: A microlinguistic content analysis for assessing
lexical semantics in people with aphasia (PWA) is lexical
diversity (LD). Sophisticated techniques have been developed
to measure LD. However, validity evidence for these
methodologies when applied to the discourse of PWA is
lacking. The purpose of this study was to evaluate four
measures of LD to determine how effective they were at
measuring LD in PWA.
Method: Four measures of LD were applied to short
discourse samples produced by 101 PWA: (a) the Measure of
Textual Lexical Diversity (MTLD; McCarthy, 2005), (b) the
Moving-Average Type-Token Ratio (MATTR; Covington,
2007), (c) D (McKee, Malvern, & Richards, 2000), and (d) the
Hypergeometric Distribution (HD-D; McCarthy & Jarvis,

2007). LD was estimated using each method, and the
scores were subjected to a series of analyses (e.g.,
curve-fitting, analysis of variance, confirmatory factor
analysis).
Results: Results from the confirmatory factor analysis
suggested that MTLD and MATTR reflect LD and little of
anything else. Further, two indices (HD-D and D) were found
to be equivalent, suggesting that either one can be used
when samples are >50 tokens.
Conclusion: MTLD and MATTR yielded the strongest
evidence for producing unbiased LD scores, suggesting that
they may be the best measures for capturing LD in PWA.
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T
he cardinal deficit in aphasia is anomia, which is
difficulty retrieving a word during discourse or in
structured tasks (Goodglass & Wingfield, 1997). For

this reason, addressing word-finding deficits has attracted
considerable attention in aphasiology. One of the micro-
linguistic content analyses available for assessing lexical
semantics in people with aphasia (PWA) is lexical diversity
(LD). LD can be defined as ‘‘the range of vocabulary
deployed in a text by a speaker that reflects his/her capacity
to access and retrieve target words from a relatively intact
knowledge base (i.e., lexicon) for the construction of higher
linguistic units’’ (Fergadiotis & Wright, 2011, p. 1,415).

LD has been used in several applications in aphasiol-
ogy. For example, it has been used to differentiate PWA
from neurologically intact adults (Holmes & Singh, 1996), to
measure selected aspects of semispontaneous discourse in
PWA in order to capture clinically relevant aspects of noun
and verb production (Lind, Kristoffersen, Moen, &
Simonsen, 2009), and to examine whether and to what extent

LD differs across adults with fluent and nonfluent aphasia
(Wright, Silverman, & Newhoff, 2003). LD has also been
used as an external criterion to investigate the concurrent
validity of the story retell procedure (Doyle et al., 1998),
which was designed to elicit language samples in PWA
(McNeil et al., 2007). Besides clinical applications, LD
has been used as a key variable for theory testing and
development. Gordon (2008) studied the productive voca-
bulary of individuals with fluent and nonfluent aphasia in the
context of the ‘‘division of labor’’ hypothesis (Gordon &
Dell, 2003). Crepaldi et al. (2011) used LD to assess the
predictions of neuropsychological models that may give rise
to the characteristic differential noun–verb impairment in
aphasia. Finally, LD has been used to investigate the efficacy
and generalization to discourse of semantic feature analysis
(Rider, Wright, Marshall, & Page, 2008).

LD has also been used in other areas of speech-
language pathology, such as to track language development
in children with cochlear implants (Ertmer, Strong, &
Sadagopan, 2002), to study and diagnose specific language
impairment (Owen & Leonard, 2002; Thordardottir &
Namazi, 2007), and to differentiate bilingual children with
and without specific language impairments (Kapantzoglou,
2012; Klee, Gavin & Stokes, 2007). Despite its widespread
use in speech-language pathology, both in the field of
aphasiology and other fields, identifying a robust measure to
capture LD has been very challenging (Malvern, Richards,
Chipere, & Durán, 2004). In this study, we collected and
examined validity evidence for four computational tools that

aArizona State University, Phoenix

Correspondence to Gerasimos Fergadiotis: gfergadiotis@pdx.edu

Editor: Swathi Kiran

Associate Editor: Jamie Reilly

Received July 28, 2012

Revision received October 15, 2012

Accepted January 28, 2013

DOI: 10.1044/1058-0360(2013/12-0083)

American Journal of Speech-Language Pathology N Vol. 22 N S397–S408 N May 2013 N � American Speech-Language-Hearing Association S397
Supplement: Select Papers From the 42nd Clinical Aphasiology Conference



have been proposed for measuring the LD of a language
sample, and we evaluate their appropriateness and applic-
ability to aphasic discourse.

Measuring LD

One of the most commonly used approaches to
measure LD is to use the ratio of unique lexical items divided
by the total number of words in a sample (type-token ratio,
TTR; Chotlos, 1944; Templin, 1957) after standardizing
the length of the sample.1 TTR is inherently flawed because
it varies as a function of sample length. As the sample
length increases, it is less probable that a speaker will
produce new words because the number of lexical items that
can be activated at any given time is considered finite
(Heap, 1978).

When using TTR to gauge LD, shorter samples often
appear to be richer, rendering comparisons across speakers
who produce language samples of different lengths prob-
lematic. Researchers have attempted to address this issue by
proposing a standardized sample size, but this approach has
not produced satisfactory results. A major limitation is that
in order for results to be comparable across studies, re-
searchers have to agree on the number of tokens required to
estimate the TTR. In aphasiology, some researchers have
proposed 300 tokens as a standard length (Brookshire &
Nicholas, 1994; Prins & Bastiaanse, 2004). However,
consensus on this issue is primarily low because it is not
always feasible to obtain a predetermined number of tokens.
Individuals with aphasia often do not produce long samples;
subsequently, researchers truncate samples based on the
shortest sample in the study (e.g., Gordon, 2008).

Recently, a new generation of tools for measuring LD
has emerged from the field of computational linguistics.
These tools have been designed to produce length-invariant
estimates of LD without discarding any data. With a few
exceptions, these measures have been used in limited
applications in the field of speech-language pathology.

The Measure of Textual Lexical Diversity (MTLD;
McCarthy, 2005) employs a sequential analysis of a sample
to estimate an LD score. Conceptually, MTLD reflects the
average number of words in a row for which a certain TTR is
maintained. To generate a score, MTLD calculates the TTR
for increasingly longer parts of the sample. Every time the
TTR drops below a predetermined value, a count (called the
factor count) increases by 1, and the TTR evaluations are
reset. The algorithm resumes from where it had stopped, and
the same process is repeated until the last token of the
language sample has been added and the TTR has been
estimated. Then, the total number of words in the text is
divided by the total factor count. Subsequently, the whole

text in the language sample is reversed and another score of
MTLD is estimated. The forward and the reversed MTLD
scores are averaged to provide the final MTLD estimate.

The Moving Average Type Token Ratio (MATTR;
Covington, 2007; Covington & McFall, 2010) measures LD
by calculating TTRs for successive nonoverlapping segments
of a sample. The algorithm selects a window length of x
tokens, and the TTR for tokens 1 to x is estimated. Then, the
TTR is estimated for tokens 2 to (x +1), then 3 to (x + 2), and
so on for the entire sample. The final score is the average of
the estimated TTRs.

The D (Malvern & Richards, 1997; McKee, Malvern,
& Richards, 2000) generates LD scores that conceptually
reflect how fast TTR decreases in a sample. If a language
sample consists of types that are being used repeatedly, TTR
would decrease faster as a function of the sample size. The D
performs a series of random text samplings to plot an
empirical TTR versus number-of-tokens curve for a sample.
Thirty-five tokens are randomly drawn from the sample
without replacement, and the TTR is estimated. This process
is repeated 100 times, and the average TTR for 35 tokens is
estimated and plotted. The same routine is then repeated for
subsamples of 36 to 50 tokens. The average TTR for each
subsample of increasing token size is subsequently plotted to
form the empirical curve. Then, the least squares approach is
used to obtain an estimate of D that produces a theoretical
curve that maximizes the fit to the empirical TTR curve.
Lower D values result in steeper theoretical curves that fit the
empirical curves of samples with poorer LD. The whole
process is repeated three times, and the final D value is the
average of the three runs.

Recently, McCarthy and Jarvis (2007) argued that D
might be related to probabilities of word occurrence that can
be modeled using the hypergeometric distribution (HD). The
HD is a discrete probability distribution that expresses the
probability of k successes after drawing n items from a finite
population of size N containing m successes without
replacement. For example, if a container contains m white
marbles and N – m black marbles (total number of marbles
= N), and drawing a white marble is defined as a success, the
HD gives the probability of drawing k white marbles after n
draws without replacement.

McCarthy and Jarvis (2007) used the HD to create a
new measure of LD called the HD-D. The assumption
underlying HD-D is that if a sample consists of many tokens
of a specific word, then there is a high probability of drawing
a sample that will contain at least one token of that word.
McCarthy and Jarvis reported strong linear correlations
between HD-D and D scores in two studies (McCarthy &
Jarvis, 2007, r = .97; McCarthy & Jarvis, 2010, average
r = .91 across several types of discourse evaluated in the
study). Based on these findings, McCarthy and Jarvis argued
that D is an approximation of HD-D expressed in a different
metric. Further, they attributed the less than perfect
correlations between the two measures to the main difference
in the nature of the two measures—the fact that D is based
on random sampling and curve fitting, which introduces
error in the estimation process, as opposed to HD-D, which

1Various transformations of TTR have also been attempted (Carroll,

1964; Engber, 1995; Guiraud, 1960; Herdan, 1960), some of which have

been applied to aphasic discourse (e.g., Prins, Snow, & Wagenaar, 1978;

Wachal & Spreen, 1973). However, these attempts have been

unsuccessful (e.g., Tweedie & Baayen, 1998; Vermeer, 2000).
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is directly estimated based on probabilities of word
occurrence in a language sample.

A feature of HD-D is that it does not require a
minimum of 50 tokens to be estimated. By default, D is
required to estimate the average TTR for 50-token
subsamples in order to establish the empirical curve that is
modeled. If there are <50 tokens in the sample, the program
terminates without providing a score for the specific sample.
This is problematic for researchers who work with PWA
(and other clinical populations), who often produce limited
verbal output. The reason is twofold. First, language samples
with <50 tokens that are discarded may lead to a loss of
valuable information. Typically, we reach more robust
conclusions about a client’s language skills the more data are
available. Second, from a missing data theory perspective,
only when data are missing at random or completely at
random (both terms introduced by Rubin in 1976) is the
missing mechanism ignorable. Conversely, if the data are
missing not at random, and this fact is ignored and the data
are analyzed, statistical parameter estimates may include
substantial bias that may lead to invalid inferences (Enders,
2010; Graham, 2009; Little & Rubin, 2002; Rubin, 1976).

To illustrate this point, Figure 1 shows two probability
density functions for a standardized variable X (e.g., height).
The first curve corresponds to a simulated complete data set
of 1,000 observations, and M1 is its mean. When data are
missing not at random, the probability that data are missing
depends on the unseen scores themselves. The second curve
corresponds to such a truncated data set for which data are
missing not at random and missingness is related to an
observation’s value: Values <–1 are not observed system-
atically. This scenario could occur for instance if our sample
consisted of U.S. fighter pilots who have a minimum
standing height requirement of 64 in. In this case, M2 would
be a biased estimator of the mean height of the general
population. Similarly, if LD scores are not missing in a
haphazard fashion when estimated with D, but instead are

missing in a systematic way, parameter estimates may also be
biased. Further, even though Figure 1 demonstrates the
effect of systematic missingness on a mean, the same logic
applies to the estimation of any statistical model parameter
(e.g., variances, covariances, factor loadings, regression
coefficients). Finally, notice that if the data points were
missing at random (e.g., some from the lower end of the
distribution and some from the higher end of the distribution
with equal probability), the estimated mean would not have
been biased despite the missing values.

Validity evidence for MTLD, MATTR, and D.
McCarthy and Jarvis (2010) explored the convergent and
divergent validity of MTLD scores. Using indices that have
been used in the past to estimate LD, such as Maas (i.e., a
TTR transformation; Maas, 1972), D, and Yule’s K (a
probabilistic index; Yule, 1944), McCarthy and Jarvis found
that MTLD correlated moderately to strongly with all three
indices: Correlations were –.84, .69, and .85, respectively.
McCarthy and Jarvis argued that based on these results,
convergent validity was supported. MTLD did not correlate
strongly with TTR, which is influenced by length (r = .32;
r2 = .10). This finding was interpreted as evidence of
divergent validity.

Fergadiotis (2011) examined a corpus of four types of
discourse (i.e., procedural discourse, eventcasts, storytelling,
recounts) from 442 neurologically intact adults in order to
evaluate four LD techniques: D, the Maas index, MTLD,
and MATTR. LD scores were estimated for each type of
discourse and were modeled using structural equation
modeling to uncover their latent structure. Across all four
types of discourse, the highest loadings were associated with
the observed variables that were estimated using the
MATTR and MTLD variables (median lMATTR = .96,
median lMTLD = .94), followed by D (median lD = .85) and
Maas (median lMaas = –.55). Results suggested that
MATTR, MTLD, and D were strong indicators of LD.
However, for the D- and Maas-generated variables, the

Figure 1. Two probability density functions for (a) a complete data set and (b) the same data set for which data are missing not at random from
the lower end of the distribution. M2 is a biased estimate of the population mean.
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results were consistent with the presence of method factors
that represented the influence of construct-irrelevant sources.
By experimentally manipulating the samples through trun-
cation, Fergadiotis demonstrated that the irrelevant source
(i.e., method factors) influencing the measures was associated
with length.

The validity of D-score interpretations has been
explored in several studies (Malvern & Richards, 1997;
Malvern et al., 2004; Richards & Malvern, 1997). Estimates
of D correlated strongly with well-validated measures of
language and also developmental and demographic variables.
However, the validity of D score interpretations has been
questioned. For example, Owen and Leonard (2002) found
that mean LD, as estimated by D, was found to vary as a
function of sample length: Samples that were truncated to 250
words had a significantly lower mean D score compared to
samples that were truncated to 500 words. Owen and
Leonard concluded that ‘‘it appears that D does not entirely
avoid the problem of sample size influence’’ (p. 935).

Statement of the Problem

Several sophisticated techniques have been developed
recently to address the limitations of flawed LD measures
such as TTR. Although these methods assert to measure LD,
each one is based on its own theoretical assumptions, which
are reflected in the computational machinery they employ.
Therefore, it is not clear whether these techniques measure
the same construct and to what extent they produce valid
and reliable scores. Further, D’s minimum-50-tokens-per-
sample requirement raises questions regarding the measure’s
applicability to PWA. The purpose of this study was to
examine the validity of score interpretations from four
computational measures of LD when they are applied to
aphasic discourse. Our specific aims were to:

N Investigate the relationship between D and HD-D to
determine whether clinicians and researchers can use them
interchangeably.

N Assess if the minimum requirement of 50 tokens to
estimate D may lead to biased estimates that may result in
invalid conclusions about patients’ language skills.

N Assess whether all techniques (MTLD, MATTR, D, HD-
D) measure the same latent variable and to what extent.

N Examine whether there is a single latent variable
determining performance for each estimation technique or
whether there is evidence consistent with the presence of
systematic residual covariance that jointly determines the
scores that could undermine validity.

Method and Results

Participants

Data from 101 monolingual PWA were included in
this study. Their data were retrieved from AphasiaBank
(MacWhinney, Forbes, Fromm, & Holland, 2011), which is
an online, shared database that collects and analyzes digital

recordings of discourse from PWA across a series of tasks.
All of the participants had acquired aphasia secondary to a
single left-hemisphere stroke. Inclusion criteria and the
sample’s characteristics including gender, age, race/ethnicity,
years of education, average performance on the Boston
Naming Test (Goodglass, Kaplan, & Barresi, 2001), and
Western Aphasia Battery—Revised (WAB–R; Kertesz, 2007)
aphasia quotient classification, are presented in Table 1.

Discourse Elicitation and Data Preparation

Stimuli and instructions. Discourse samples were
collected in a single session, and several tasks for eliciting
discourse were employed, including personal narratives,
sequential pictures, single pictures, and telling of the story of
Cinderella (Grimes, 2005). For this study, only the samples
based on the Cinderella story were analyzed. To elicit the
story, participants were presented with the wordless stimulus
book Cinderella (Grimes, 2005). They were told to look
through the book to remember how the story goes, and they
were allowed as much time as desired to view it. Then, the
book was taken away, and the participants were asked to tell
as much of the story as they could. The examiners used
standard written scripts to keep verbal instruction and
prompts consistent across testing sites. Further, the exam-
iners were instructed to remain silent as much as possible
during administration of the task while also providing as
much nonverbal encouragement as possible.

Transcription and language sample preparation.
Samples were digitally recorded and orthographically
transcribed in the CHAT format that is compatible with a set
of programs called CLAN (MacWhinney, 2000). Words were

Table 1. Study participants’ demographic information.

Participants

Characteristic (N = 101)

Gender ratioa 56M:43F
Age in years 63.09 (11.32)
Ethnicitya

African American 7
Asian 3
Hispanic 3
Other 4
White 80

Education level completeda

Some high school 4
12th grade 21
Some college 17
Bachelor’s or higher 55

Aphasia duration in years 6.04 (5.45)
BNT 8.45 (4.30)
WAB–R AQ 76.20 (15.40)

Note. SDs are shown in parentheses. BNT = Boston Naming Test
(Goodglass, Kaplan, & Barresi, 2001; WAB–R AQ =Western Aphasia
Battery—Revised (Kertesz, 2006) aphasia quotient.
aGender information was unavailable for two individuals, ethnicity
information was unavailable for four individuals, and education
information was unavailable for four individuals.
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tagged morphosyntactically, and function words were
removed from the samples because they have little or
ambiguous meanings and convey predominantly gramma-
tical relationships. As a result, only content words (i.e.,
nouns, verbs, adjectives and –ly adverbs) were analyzed.
Further, to avoid conflating LD with grammaticality, a
lemma-based analysis was performed. Based on Kiparsky’s
(1982) levels of morphological derivation, level three inflec-
tions were disregarded (e.g., eat, eats, ate = eat). Repetitions,
repairs, fillers, and paraphasias were coded and were
subsequently excluded from analysis. The average number of
content words of the analyzed samples was 84.94 (SD =
53.28).

Estimating LD. Five measures were applied to the
language samples to estimate LD. They included MTLD,
MATTR, D, HD-D, and TTR (the last measure was added
to address the goals of specific Aims 3 & 4; see next section).
MTLD, HD-D, and TTR were estimated using a stand-alone
application tool, the Gramulator 5.0 (McCarthy, Watanabe,
& Lamkin, 2012). D was estimated using the voc-D program
in CLAN. Finally, MATTR was estimated using computer
software that was developed by Covington (2007). To avoid
missing data, the length of the MATTR window was set to
17 tokens, which was the minimum number of tokens in the
language samples.

Relationship of D and HD-D and the Impact of
Missing Data

Statistical approach: Curve fitting and analysis of
variance (ANOVA). To determine whether D and HD-D
can be used interchangeably to measure LD, we analyzed
these scores using the R statistical language (R Development
Core Team, 2011) and SPSS 20. The nonlinear least square
fit function (Bates &Watts, 1988) into the ‘‘stats’’ package of
R was used to fit a linear and an exponential curve. Model fit
was based on visual and algebraic information. To determine
if the minimum requirement of 50 tokens to estimate D will
lead to biased estimates, we conducted a one-way ANOVA
in SPSS 20.

Preliminary analysis. Language samples from 101
PWA were included in the study. Data were prepared for
statistical analysis following Kline (2010) and Tabachnick

and Fidell (2007). Descriptive statistics for the number of
types, tokens, and TTRs, as well as the estimated LD indices,
are provided in Table 2. After being imported into SPSS, the
data were screened for missing values. All variables had
complete data except for D, for which,27% of the data were
missing due to an insufficient number of tokens in the
samples. Distributions were visually inspected and assessed
in terms of the normality assumption; skewness and kurtosis
statistics were estimated. Several distributions were noted to
be skewed and with various degrees of kurtosis. For this
reason, the maximum likelihood ratio (MLR) estimator was
used, which estimates parameters using maximum likelihood
with standard errors and a x2 test statistic that are robust to
nonnormality.

Relationship between D and HD-D: Results. To
investigate the relationship between D and HD-D, SPSS 20
and R were used to fit a linear and an exponential curve to
the data. First, a linear regression analysis was performed to
predict D from HD-D for the participants with complete
data. The linear regression equation was significant,R2 = .85,
F(1, 72) = 362.69, p < .001. Then, an exponential model was
fit to the same data. The exponential equation was also
significant, R2 = .99, F(1, 72) = 15972.94, p < .001. However,
the difference in variance explained using the exponential
model was substantial (DR2 = .14), which suggests that the
exponential model better captured the relationship between
D and HD-D than the linear model. The two models were
further compared using the residual sum of squares, the
residual standard error, and the standard errors of the model
parameters. Based on the algebraic information, the
exponential model demonstrated considerably better fit (see
Table 3). Finally, the data were plotted along with the linear
and exponential curves suggested by the models, and fit was
evaluated visually (Figure 2). Overall, the exponential model
demonstrated better fit compared to the linear model.
Substantively, the excellent fit of the exponential model to
the bivariate data (graphically and in terms of the R2)
provides strong evidence that HD-D and D are essentially
isomorphic; that is, using the exponential function, one can
estimate D scores based on observed HD-D with excellent
accuracy.

voc-D and missing data: Results. The curve estimation
analysis was followed up by an ANOVA in SPSS to explore

Table 2. Descriptive statistics of the major study variables.

Variable N M SD Range Skewness Kurtosis

Types 101 42.44 21.15 11–108 –0.80 –0.48
Tokens 101 83.08 53.15 17–273 –1.17 –2.85
TTR 101 00.55 00.11 .27–.80 –0.01 –0.09
D 74 31.55 14.88 7.20–90.28 –1.17 –2.85
HD-D 101 –7.78 04.46 –23.83–.76 –0.94 –1.22
MTLD 101 25.11 09.81 10.45–65.89 –1.32 –2.96
MATTR 101 0.76 00.08 .49–.92 –0.56 –0.77

Note. TTR = type-token ratio; D (McKee, Malvern, & Richards, 2000); HD-D = Hypergeometric Distribution D (McCarthy & Jarvis,
2007); MTLD = Measure of Textual Lexical Diversity (McCarthy, 2005); MATTR = Moving-Average Type-Token Ratio (Covington,
2007).
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whether the missing D data were missing not at random.
Using the exponential function, D scores were computed
based on HD-D for the language samples with <50 tokens,
for which D in CLAN was not able to produce estimates
(solid data points in Figure 2). Henceforth, voc-D generated
scores and imputed D scores based on HD-D will be referred
to as DVOC and DIMP, respectively, and the combined
variable DVOC + DIMP will be referred to as DCOM. Also, a
binary missingness variable was created that denoted
whether D scores were voc-D generated or were missing and
estimated from HD-D. To assess the assumption of
homogeneity of variance, Levene’s test of equality of error
variances was performed, and it was not statistically
significant, F(1, 99) = .62, p = .43. A between-subjects one-
way ANOVA was conducted with DCOM as the dependent
variable and missingness (voc-D values present or not) as the
independent variable. There was a significant effect of
missingness, F(1, 99) = 14.45, p = <.001, η2 = .13,
Cohen’s d = .88.

The box plot in Figure 3 shows graphic summaries for
DVOC, DIMP, and DCOM. Results suggested that the
probability of D scores missing was related to the values of
D; that is, the missing D scores were more likely to be lower
than the scores that were estimated with voc-D. Figure 3
shows the impact of this finding in the current data set. If the
number of tokens in a sample did not limit calculating D, the
estimate of the mean would have been approximately equal
to 28.24 (DCOM). However, the estimation process was more
likely to fail for language samples that had lower LD. As a
result, values from the lower end of the distribution were
eliminated systematically, and the mean estimate of D in our
sample using the voc-D program alone was biased upward
(DVOC = 31.55).

Investigating Construct Validity

After addressing the first two questions, we wanted to
determine whether all of the techniques (i.e., MTLD,

Figure 2. Bivariate scatter plot of the scores generated by vocD and HD-D with fitted linear and exponential curves. Solid dots represent
scores that were imputed using the exponential model.

Table 3. Model summaries and parameter estimates.

Model R R2 F RSS Residual SE a (SE) b (SE)

Linear 0.92* 0.85 392.69 2504 5.9 56.87 (1.45) 3.82 (0.19)
Exponential 0.99* 0.99 15972.94 129.1 1.34 75.08 (0.59) 0.14 (<0.01)

Note. RSS = residual sum of squares; SE = standard error.

*p < .01.
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MATTR, D, HD-D) measure the same construct and
whether there was evidence consistent with the presence of
systematic residual covariance that would indicate length
effects. Because the data generated by voc-D were not
missing at random (and would therefore bias the model
parameter estimates), we imputed D values for the missing
data points from HD-D scores and the exponential function
used earlier.

Statistical approach: Confirmatory factor analysis
(CFA). The LD of a sample was conceptualized as an
unobserved latent variable, and its relationship with four
observed variables (MTLD, MATTR, D, and TTR) was
modeled using CFA in Mplus 6. Two models that reflected
competing hypotheses were specified a priori; they were
evaluated in terms of global fit and localized areas of strain
and were compared directly using a x2 difference test.
Following Bollen (1989), the magnitude of the standardized
loadings and error covariances from the best fitting model
were used to compare the relative influence of the factor on
the manifest variables and to answer the substantive
questions of the paper.

The first model assumed a single latent common factor
j that was interpreted as the mathematical instantiation of
LD in a sample. The loadings, lMTLD, lMATTR, lD, and lTTR
indicated how strongly the latent variable influenced the
observed variables, or, alternatively, how strongly a score
generated by a given technique reflected the LD of a sample.
Finally, the model stipulated that once the effect of the
common factor was taken into account, there was no

systematic covariance among the residual terms of the
observed indicators. Given that TTR is influenced by sample
length, the lack of residual term covariances reflected the
hypothesis that MTLD, MATTR, and D did not share
TTR’s susceptibility to length effects. In other words, TTR
was used not in spite of but because of its known length
dependency to help us uncover similar behavior in other
indices. The second model was identical to the first except
that the error covariance between the TTR and D error
terms was allowed to be freely estimated. This specification
was consistent with the findings of Owen and Leonard (2002)
and Fergadiotis (2011), who suggested that D might be
influenced by length. Therefore, allowing the error covar-
iance to be estimated modeled the specific hypothesis that D,
similar to TTR, is influenced by a construct unrelated to LD,
most possibly, length.

Investigating construct validity: Results. The models
were estimated in Mplus 6.1 using the MLR estimator. Four
fit indices were taken into account to examine global model
fit. Fit indices included the Satorra-Bentler scaled x2 statistic
(Satorra & Bentler, 1994) to take into account the
nonnormality of the data, the comparative fit index (CFI;
Bentler, 1990), the root-mean square error of approximation
(RMSEA; Steiger & Lind, 1980), and the standard root mean
residual (SRMR; Hu & Bentler, 1998). A good fitting model
was expected to have a nonsignificant x2 at the .05 level; a
CFI value >.95; an RMSEA value <.08, with the upper
bound of the 90% confidence interval <.10; and an SRMR
value <.08 (Brown, 2006; Hu & Bentler, 1999; Kline, 2010;

Figure 3. Boxplots of D scores generated with vocD, imputed with HD-D, and combined. The width of the plots is proportional to the square
root of the samples sizes. The black line in each box indicates the median for each set of scores. If the notches of two plots do not overlap, this
is ‘‘strong evidence’’ that the two medians differ (Chambers, Cleveland, Kleiner, & Tukey, 1983).
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Steiger, 2007). To assess for local strains in the solution,
modification indices and normalized residuals were consid-
ered. Two hypotheses using nested model comparisons were
tested followed by a substantive evaluation of model
parameters. To perform the nested model comparisons, the
scaled difference x2 test statistic (Satorra & Bentler, 2001)
was used.

First, a unidimensional CFA model with four indica-
tors (MTLD, MATTR, DCOM, TTR) was fit to the data (see
Model A in Figure 4). The covariances among the residual
terms of the indicators were fixed to 0. To identify the model,
the variance of the latent variable was set equal to 1. The
model converged to a solution with no out-of-range
parameter values for which the fit indices provided mixed
evidence of adequate model fit: x2(2, N = 101) = 17.74, p <
.001; CFI = .93; RMSEA = .30 (90% confidence bands = .19
and .42); and SRMR = .04. The largest normalized residual
was associated with the covariance of TTR and DCOM

(–1.23). Also, based on the modification indices, allowing the
residual variances of TTR and DCOM to covary would
improve the model fit significantly (approximate Dx2 = 14.44;
expected parameter change = –.45).

In the next step, a model with a single factor defined by
the four indicators (MTLD, MATTR, DCOM, TTR) was fit
to the same data (see Model B in Figure 4). The model was
identical to Model A with one exception: The TTR and
DCOM residual terms were allowed to covary. The model
converged to a solution for which all fit indices suggested
excellent fit to the data, x2(1, N = 101) =.38, p = .54; CFI =
1.00; RMSEA = .00 (90% confidence bands = .00 and .22);

and SRMR = .007. Similarly, no local model strain was
noted (highest normalized residual = –.2; no modification
indices with values >3.84). Also, none of the standardized
parameter estimates took on out-of-range values, and all of
the estimates were statistically significant. The two models
were further compared using the scaled difference x2 test
statistic to explore whether fixing the TTR and DCOM

covariance to 0 had a statistically significant impact on
global fit. Based on the results, the null hypothesis that
Model A did not fit significantly worse than Model B was
rejected, Dx2(1) = 23.02, p < .001. Figure 4 shows the
parameter estimates for both models (Mplus output is
available upon request). Based on the results, Model B
demonstrated excellent global fit and a lack of localized
misfit and statistically outperformed Model A.

Discussion

The main purpose of this paper was to collect validity
evidence regarding techniques for measuring LD for the
study of aphasic discourse. The specific aims were to
investigate the relationship between D and HD-D; explore
whether using D may lead to biased estimates when studying
aphasic discourse; determine whether MTLD, MATTR, and
D measure the same latent variable and to what extent; and
examine whether there is evidence of length effects for the
aforementioned LD indices. In a series of analyses, HD-D
and D were found to correlate highly using an exponential
function. Also, statistically significant mean differences were
uncovered between scores that were estimated using vocD
and the scores for which the vocD algorithm failed to
produce scores due to inadequate number of tokens in the
samples. Finally, a unidimensional CFA model of MTLD,
MATTR, D, and TTR that allowed for the residual terms of
TTR and D to correlate freely exhibited excellent fit to the
data. To the best of our knowledge, this was the first time
that missing data theory was employed to study the
performance of the D index. Further, it was the first time
that CFA was used to study the validity of the MTLD,
MATTR, and D score interpretations.

The Relationship of HD-D and D and the Impact of
Missing Data

One of the findings from the study was that an
exponential function could be used to model the relationship
between HD-D and D with very high accuracy. This finding
was consistent with the hypothesis that HD-D and D may be
equivalent indices. McCarthy and Jarvis (2007, 2010)
reported a strong relationship between HD-D and D based
on which they argued that D was an approximation of HD-
D expressed in a different metric. They further argued that
the correlations were less than perfect because the estimation
of D using vocD, which involves random sampling and curve
fitting, introduced error in the measurement. Findings from
the current study lend more support to McCarthy and Jarvis’
conclusion. However, as opposed to previous studies that
used a linear model, we used nonlinear regression and

Figure 4. Two alternative confirmatory factor analysis models of the
lexical diversity scores based on language samples from 101 people
with aphasia. Completely standardized robust maximum likelihood
parameter estimates. For each observed variable, the variance
accounted for by the common factor, R2 = (1 – residual variance) =
l2. For all parameter estimates, p < .001, except for MTLD’s residual
variance (p = .004).
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modeled the data using an exponential curve that demon-
strated substantially better and nearly perfect fit to the data.
These findings indicated that the random error element in the
estimation of D was considerably less than what had been
suggested previously in the literature.

The finding of the close-to-perfect relationship between
HD-D and D has significant implications for practical
applications. Solely on the basis of computing a score, the
correlation of the two indices suggested that the choice of
which index to use may be arbitrary when measuring LD in
language samples that have >50 tokens. One significant
advantage of D for speech-language pathologists and
researchers is that D is integrated in CLAN, which allows for
great flexibility in coding, manipulation, and preparation of
transcribed data and further offers a wide range of automatic
analyses (MacWhinney, Fromm, Forbes, & Holland, 2011;
MacWhinney, Fromm, Holland, Forbes, & Wright, 2010).

However, we also presented evidence that under
certain conditions, the use of D may introduce bias in
statistical analyses and so may lead to invalid conclusions.
Specifically, we found that the probability of a missing D
datum was related to its value: Lower D scores were more
likely to be missing, thus biasing the mean upward. It could
be argued that this difference may not be significant enough
to warrant attention when using D. Two things should be
noted that may be of particular importance to researchers
who are interested in estimating and analyzing LD scores.
First, results may be more biased under certain experimental
designs. In this study, the difference between DVOC and
DCOM was small because,70% of the observations in DCOM

were included in both sets. The difference could be
considered a lower bound of bias because the data have been
aggregated. If an experimental design called for two groups,
the group with the lower mean LD would have more values
missing because the D estimation process is more likely to
fail for language samples that have lower LD. As a result, the
mean of the group with the lower LD would be biased
upward (similar to the DVOC data in Figure 3). The group
with the higher mean LD would have less missing values, and
therefore, its estimated mean would not differ as much.
Overall, however, the mean difference between the two
groups would shrink artificially, perhaps masking the real
difference. Second, it is not clear how this bias would
propagate if data were to be used in more complicated
multivariate statistical techniques such as variants of
canonical correlation or structural equation modeling
approaches.

Evidence for Construct Validity

The unidimensional configuration of Model B sup-
ported the hypothesis that MTLD, MATTR, D, and TTR
reflect the same latent variable despite their computational
differences. The scores that were generated by the different
techniques were found to be strong indicators of the latent
variable. However, there was variation in the magnitude of
the relationship between the factor and each of the indicators
(see Model B, in Figure 4). Overall, based on the results of
this study and holding everything else constant, MTLD

appeared to provide the most accurate reflection of the LD
of a sample. In contrast, ,O of the variance in TTR
reflected variance that was unrelated to the latent variable
that represented the LD of a sample.

The findings from this study regarding MTLD
confirmed and expanded previous results that had been
reported in the literature. For example, in earlier studies,
MTLD was found to correlate strongly with a number of LD
indices, including D and Maas, leading researchers to argue
in favor of MTLD’s validity (e.g., McCarthy, 2005).
However, the methodology that had been used previously to
collect validity evidence regarding LD indices had relied
primarily on the examination of correlational relationships
with language samples from neurologically intact adults. In
the current study, MTLD was entered in a model with a
single factor that was formed by the common variance across
four LD indices. The excellent fit of Model B to the data and
its structure and parameters provided a more coherent and
accurate representation of how observed scores from LD
indices such as the MTLD may relate in this and other
studies.

DCOM was also found to be a strong indicator of LD,
but the interpretation of its scores may not be as straight-
forward as for MTLD. The proportion of variance in DCOM

attributed to LD was ,79% (Figure 4), suggesting a strong
relationship with the latent variable. Nevertheless, this
estimate was considerably lower than the respective param-
eter value of MTLD (i.e., 93%) that was found in this and a
previous study (Fergadiotis, 2011). Further, the residual
variance of DCOM that represented the combination of
random error and systematic variance that was irrelevant to
LD was high relative to MTLD (21% and 7%, respectively).
Therefore, in probabilistic terms, an MTLD score may
convey more information about the LD of a sample than D
in the sense that an MTLD score reflects primarily LD (93%)
and little of anything else (7%). A score generated by D
would reflect LD (79%) and a mixture of sample length
effects and random noise (21%).

Specifically, the current study showed that D scores
may have been determined by two sources. First, the scores
were determined by a factor that influenced the scores across
all four indices. Arguably, this factor represented the LD of a
sample. But, unlike MTLD and MATTR, DCOM correlated
with TTR, which is known to decrease as a function of
sample length. Therefore, similar to previous studies (e.g.
Owen & Leonard, 2002; McCarthy & Jarvis, 2007), Model B
was consistent with the hypothesis that effects related to
length may influence D. Further, based on the direction of
the error covariance parameter (covDCOM*TTR = –.49), and
given that TTR decreases as a function of length, Model B
predicts that as sample length increases, D scores will also
increase. Even though this systematic variance is only a
fraction of the residual variance of DCOM, and therefore has
an upper bound of 21%, it constitutes a second dimension
along which D scores vary systematically.

Regarding MATTR, the CFA results indicated that
this index was also a strong indicator of LD and therefore it
may be useful for analyzing the LD of discourse produced by
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PWA. A great advantage of MATTR is its face validity
because it is equivalent to TTR and fairly straightforward to
grasp and explain. Face validity is a very desirable property,
especially for professionals who work with individuals with
speech and language disorders in clinical settings (e.g.,
Gordon, 2008; Lind et al., 2009). MATTR does not require
an understanding of frequency distributions, curve fitting, or
the nature of stochastic processes in order to convey its
meaning. Therefore, it may enable more meaningful com-
munication between clinicians, patients, and their families.

The magnitude of MATTR’s relationship with the
latent factor was smaller compared to MTLD’s and
comparable to DCOM’s (lMATTR = .85; see Figure 4). This
finding contrasted with the results in Fergadiotis (2011),
where MATTR was the strongest indicator of LD when
assessing language samples from neurologically intact adults
(average lMATTR across four types of discourse = .95). This
discordant result may have been due to methodological
differences between the two studies. Unlike Fergadiotis, the
current study employed a lemma-based analysis of content
words from language samples from PWA. To avoid missing
data, the length of the window that MATTR used to
estimate LD was set equal to the number of tokens in the
shortest language sample included in the study (17). In
contrast, the size of the window in the Fergadiotis study was
equal to 50 tokens. It is possible that using a smaller window
in the current study forced MATTR to estimate LD scores
based on less information, thus becoming more susceptible to
random fluctuations. One way to test this hypothesis in
future studies would be to experiment with the size of the
window in MATTR and observe whether using smaller
window sizes would cause shrinkage of the loading of
MATTR on the LD factor.

Finally, the residual variance of MATTR, similar to
MTLD’s, did not correlate with TTR’s residual variance.
Once the variance accounted for by the common factor in
MATTR and TTR was partialled out, the two manifest
variables were conditionally independent. In other words, the
CFA solution assumed that TTR and MATTR shared one
and only one common cause—the LD of the sample. Given
TTR’s known flaw to vary with sample length, the lack of
covariance between the residual terms of these two variables
constitutes evidence that MATTR may be a length-invariant
measure.

Taken together, the results from the CFA carry
important practical implications. The findings that (a)
MTLD and MATTR were strong indicators of LD, (b) they
did not show evidence of systematic length effects, and (c)
their residual variances were very small, constitute evidence
in favor of the validity of their score interpretations. It has
been argued that the measurement of psychological con-
structs is a process of evidentiary reasoning (Mislevy & Yin,
2009; Toulmin, 1969). When measuring LD, which is the
focus of this paper, researchers and clinicians are interested
in drawing inferences about the LD of a sample based on the
numerical values they estimate. If the value is high, clinicians
want to be able to draw the conclusion that the LD of the
sample is high. However, such a conclusion would be

valid if and only if there is evidence to support that the
numerical estimate reflects primarily LD and little of
anything else.

The current study contributes to our understanding of
how to measure LD because it provides the evidence
necessary to justify this reasoning step from the numerical
estimate to an inference about the LD of a sample.
Specifically, the results from the CFA suggest that MTLD
and MATTR reflect LD and little of anything else. On the
other hand, the findings of this study suggest that when a
language sample is evaluated using voc-D, scores may not be
interpreted unequivocally as reflections of the language
sample’s LD without taking into account the sample’s length
and considering voc-D’s propensity to generate missing
values not at random. This methodological aspect of the
measurement process constitutes a necessary (but not
sufficient) condition to reach conclusions that are mean-
ingful, appropriate, and useful. And its importance is
even greater considering the purposes for which LD data
are often collected—to understand the underlying deficits
of people with communication disorders, to test theories,
to evaluate our treatment approaches, or to change
policies.

Given the need to quantify outcomes at the functional
level (i.e., discourse), future studies should consider evaluat-
ing and developing a broader range of tools to assess lexical-
semantic deficits in discourse produced by PWA. Further, it
may be fruitful to consider the validity of score interpreta-
tions of other microlinguistic measures (e.g., informative-
ness); then, valid measures should be considered collectively
to better conceptualize and quantify the microlinguistic level
of discourse in PWA.
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